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ABSTRACT 

A method of calculating momentum components for bubble-chamber tracks in a 
nonuniform magnetic field has been developed. This method has been incorporated 
into a FORTRAN subroutine (TRED 2) which is now a part of a working version of the 
spatial reconstruction program TRED. Examples of results are given. Typical computer 
time is about 0.2 set per track on IBM 7094. 

Magnetic field nonuniformity greatly complicates the geometrical reconstruction 
of bubble-chamber tracks which for a uniform field are simply helices. There are 
many approaches to this problem [I]-[4]. In this paper, we present a method to 
treat rather general nonuniform magnetic fields. 

The principle is to find a momentum and angles in such a way that “theoretical” 
coordinates of the track solved from the equation of motion with these very same 

momentum and the angles give minimum deviation from spatial reconstructed 
coordinates of measured points. In this paper, we describe this method applying 
for the geometrical program, TRED. Only a routine (TRED 2) in TRED was modified 
for this problem.2 

This routine needs the following steps: 

(1) We find space coordinates from measurements and get rough values of 
momentum and angles at some starting point, say x, , y0 , x0 . These quantities 
may be obtained from another routine in the reconstruction program. 

1 Work supported by the U.S. Atomic Energy Commission. 
z Principally, this method can be applied for other geometrical programs such as HGEOM, 

THRESH, and FOG by adding or modifying a routine in the programs. 
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(2) We feed these quantities into this routine. Then, the routine calculates a 
chi-squared value (x2) which is defined below and obtains corrections to the 
initial values of momentum, angles and coordinates of the starting point by 
making x2 minimum by the variation method. Iterations are made if higher accuracy 
is necessary. 

Letting A4 be a number of points measured for a track, x2 is expressed by 

ax 3 a, , and oz. are the assigned errors. Xi , Yi , and Zi are the coordinates of the 
ith measurement point. x(sJ, J@J and Z(Q) are the “theoretical” coordinates at a 
given track length si which are obtained from a solution of the equation of motion 
with initial values of coordinates, momentum, and direction. In this calculation, 
we assume that the coordinates Xi , Yi , and Zi are independent measured quantities 
with the errors uy , (TV , and oz .3 

In the program, the initial values of coordinates, x0, y,, , and zO , are taken as 
the first measurement point. We define two vectors Ri and r(sJ as 

x,, , y, and z,, are given in vector notation: 

RI = Go 3 YO , zo) = r(+). 

The track length si is approximated as the sum of track segments from the first 
point to the ith point taking the segments to be straight lines joining adjacent 
points, 

where we set R, = R, . 
Because of this approximation of si , the deviation 1 dri (, which is the shortest 

8 For the recent programs such as HGEOM and TVGP, the x2 should be expressed on film planes 
taking deviations of measured coordinates from the particle orbit r(s). Since our calculation was 
incorporated into the program, TRED, which gives space coordinates (Xi , Yi , ZJ, we have used 
the expression (1) as a x2. The errors u=, oV and oz are assumed to be constant as 

ma = o* = az/L. 
The factor L can be somewhat chamber-dependent and is taken to be L = 3 as being suitable for 
the Brookhaven 80-in. bubble chamber. 
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i-TH POINT 

FIG. 1. Particle trajectory and measured points showing the first-order correction to dri. 

distance from the ith point to the “theoretical” particle trajectory should be 
corrected to the first order of s. In vector notation (see Fig. l), 

This quantity replaces (Ri - r(sJ) in Eq. (1). 
We can expand r(S) to the first order in terms of the five track parameters 

(PO 3 ho 2 To 9 Yo 9 zoJ4: 

r(si) = r(s)l p. , X0 , y. , y. , z. 

+ g- . &+I + g * aho + $ . +o 
0 0 

ar ar 
+ ay, .6Yo + az, .azo 9 (4) 

where y, and z. are the coordinates of the first point and p. , A, , and v. are the 
momentum, the dip angle and the azimuth angle of the track at this point, respec- 
tively. 

4 This choice of the parameters (PO, A,, , so z ) 09 0, 0 y  is suitable when the track is in forward 
direction (x-axis). In the least-squares fit, five parameters are sufficient to vary independently. 
I f  we use six parameters (PO , h, , q,, , x0 , y, , zO), the determinant (6 x 6) for this calculation is 
zero. The author would like to thank Dr. Arthur H. Rosenfeld and Dr. Frank T. Solmitz for 
pointing out this problem. 
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Introducing the notation: 

t1 =po> t, = ho , t3 = 9JOY 14 = Yo 9 t, = zo 9 

the conditions that x2 is minimum are given by 

axya(sti) = 0 (i = 1, 2,..., 5) (5) 

Thus, we will have the following five simultanious equations from (3), (4), and (5): 

it Dij 6tj = Di (i = 1, 2 ,..,, 5), (6) 

where 

M avk avk 
Dij= =j+-.---, 

k=l at, ati 

Di = 1 M aV,-AV,. 
kzl at, 

Here, 

(Vkh = 
X, - Ax, yk - 4, 

, 
*cl! 

(Vk>V = my , (Vkb = zk ; Azk 7 

(A v,), = -+ , (A vd, = + , 

where (Ax, , AY, , L]zk) = Ark in Eq. (3). 
Solving these equations, the corrections to the initial values of y, , z. , p. , A, , ~~ , 

will be obtained, namely, 

6ti = AJO (i = 1, 2 )...) 5), (7) 

where A is the determinant of the array Dij and Ai is the determinant of the array 
D, where the jth column is replaced by Di: 

D,, D,, ... D, ... D15 
D2, D22 D2 D25 

4 = 4 D32 D3 D35 . (8) 
Da D42 04 D45 

D,, D52 4 4, 

The expression of r(s) and derivatives of r(s) in Eq. (4) will be given in the next 
section. 
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1. THE PARTICLE TRACJECTORY IN AN ARBITRARY MAGNETIC FIELD 

In order to carry out the procedure outlined in the preceeding section, we use 
power-series expansions for the variables. The functional form of r(s) can be 
obtained from the relativistic equation of motion of a particle of mass m in the 
nonuniform magnetic field B: 

& e z = ; * [v x Bl -f(s) . v, (9) 

where f(s) * v is the momentum loss per second due to ionization. The radiation 
loss due to deceleration of a charged particle is neglected in Eq. (9) (the loss is of 
order 0.001 MeV per second for a 2BeV/cr-meson in a magnetic field of 20 kc.) 

Using the relations 

10) = As> . (vi4 = P(S) . n(s), 
n(s) = (v/u) = dr(s)/ds, 

dp/dt = I&(S) * dn/ds + n(s) * dp(s)/ds], 

we obtain two equations from Eq. (9), 

4Wds = -f(s), (10) 

p(s) . dn(s)/ds = (e/c) . [n(s) X B(s)]. (11) 

Using the well known range-momentum relation, we can express p(s) as a power 
series in s: 

p(s) = pa + p1s + pzs2 + ..*, (12) 

where the coefficients pa, pl, pz are determined for each track by the range- 
momentum relation. It is noted that p1 and pz are dependent on particle mass. 
Similarly, we can express B(s) as a power series in s: 

B(s) = B, + B, . s + B2 - s2 + a.., (13) 

where B,, B, , B, . . . can be determined by fitting B(s) to measured values of 
the magnetic field for each track. 
The solution of Eq. (11) is now given as a power series in s: 

n(s) = dr(s)/ds, 

r(s) = f a, . sn 
?L=O 

(14) 
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where the coefficients a, are given in terms of the B, and p%: 

a, = (x0 f Yo 9 20) (initial position) 

a1 = (cos h, cos fpO , cos A, sin q0 , sin A,) (initial direction) 

a2 = -!- 5 * [a, x B,] 
ZPCI c 

1 
a3=6po- [ -%p, + : (a, x B, + 2a, x B,,)] 

. . . 

1 
i 

n-2 

a, = 
n(n - 1) PO 

-iz (n - i>(n - 1 - i) LiPi 

It is noted that 

/ n(s)l” = 1. 

The derivatives of r(s) with respect to p. , A,, p0 , yO, z,, are given using the 
notation ti: 

Examples of derivatives, aa,,/ap, , &a,,/&, . . . are shown below: 

aa o aa, = o aa, = a2 
aP, = ' ape 9 ap, 

-- 
PO ’ 

aa, o aal -= ) 
ax0 

- = (-sin h, cos q. , -sin A, sin v. , cos AJ 
aAo 

aao o aal -= ) 
a,0 

- = (-cos A, sin q. , cos A, cos y. , 0) 
a9 

aao ay, = (0, 1, O), 2 = $$ = O(n 3 I), 

aao - = GAO, 11, azo 
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2. ERROR ESTIMATION AND DISCUSSION 

For practical calculation we approximate r(s) by a finite number of terms. This 
approximated r(s) causes a deviation from the true r(s) which gives errors to the 
fitted momentum and angles. 

In order to show relations between the fitted momentum error and the number 
of terms, N, used for the approximated r(s), we will give an expression of r(s) in a 
very simple case, namely, a constant magnetic field (Bx = By = 0, Bz = B). 
The starting point (x, , y, , 0 z ) and the initial direction are taken as x,, = z,, = 0, 
y0 = p and 

(%I._, = (~~., = O, (3sso = I7 

Thus, B(s) = (0, 0, B), a, = (O,p, 0), a1 = (1, 0, 0), where p is the radius of 
curvature (p = (e/c) Bp) and the momentum loss due to ionization is neglected. 
(see Fig. 2). 

FIG. 2. Particle trajectory in a constant magnetic field without the momentum loss due to 
ionization. 

We can then calculate a, for all n. We find 
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The factorial coefficients in Eq. (17), make r(s) a very strongly convergent 
function of s. Therefore, if we approximate r(s) by taking only the first N terms, 
the deviation from the true r(s) will be approximated by the (N + I)th term in 
Eq. (17), namely, 

dr c p(~/p)(~+~)/(N + l)! . 

Using the relation that sagitta = s2/8p, the fractional error in fitted momentum 
at a distance s along the track is of order of magnitude 

In the case of a nonuniform field, we may approximate the deviations of p(s) and 
B(s) from the true p(s) and B(s) by the (N’ + I)th and (N” + 1)th term in 
Eq. (12) and (13), respectively. Letting dP,p and AB,” be these errors in fitted 
momentum due to the finite power-series expansions, the fractional errors of p(s) 
and B(s) are given by 

(AP/P),~ = WP,,/P)/W’ + 3W’ + 21, (19) 

@P/P),~ = W%#9IW’ + 3W” + 21, (20) 

where N’ and N” are the numbers of terms used for the approximated p(s) and 
B(s). Similar consideration can be applied to the errors of angles due to the 
approximations of p(s), B(s) and r(s). 

The choice of the numbers N, N’, and N” depends upon the accuracy required 
in an experiment. These numbers should be chosen in such a way that the errors 
of fitted momentum and angles due to the approximations of p(s), B(s), and r(s) 
are less than other errors-for instance, less than measurement error. For an 
8 BeVlc n--p experiment which was performed in the B.N.L. 80-in. bubble 
chamber, the p(s), B(s), and r(s) were chosen as follows: 

P(S) = PO + PI + PlS + Pd, 
B(s) = B0 + B,s + B,s2 + B3s3, 
r(s) = a, + a,s + ... + a,?. 

(21) 

Due to these approximations the error Ap/p is of order 0.1%) and the errors of 
angles are of order 0.002”, for a pion momentum 100 MeV/c and greater, if 
the track length is less than the radius curvature. Fitted quantities (p, X, q) for a 
generated track are listed in the Appendix. The results using a real track are also 
given. 

As can be seen from Eq. (17), the r(s) is convergent even if s/p is larger than one. 
However, it is desirable to use a track length not larger than the radius of curvature, 
since the error Ap/p is proportional to (s/~)~-l. If we take the point (x0 , y, , zO) 
at the midpoint of the track, we can extend the track length from --s to +s, SO 
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that the track length can be extended to twice p keeping s/p < 1. In any event, if 
the track curves as much as 1 radian, the momentum error, in existing bubble 
chambers, is likely to be dominated by Coulomb scattering-so a track length 
greater than p is not particularly helpful. 

The computer time to calculate the momentum and angles depends on how 
many terms are used for p(s), B(s) and r(s), and how many points are measured 
for the track. The time also depends on the number of iterations and the number 
of particle masses used for the calculation. Using Eq. (21) for p(s), B(s) and r(s), 
the IBM 7094 computer time for one iterations and one particle mass is about 
0.2 set per 8-point track. 
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APPENDIX 

We will show two examples of how this program makes corrections to the 
starting values p,, , X, , r++, , and z,, .5 

As the first example, we use a generated track of a 100 MeVfc rr meson, 
where we assume that 8 points are measured along the track in equal spacing and 
that the track length is 14.0 cm. The coordinates of the 8 points are listed in the 
first part of Table I with values of a magnetic field at each point which is assumed 
to be the magnetic field of the B.N.L. 80-in. bubble chamber [5]. No measurement 
and multiple scattering errors are taken into account for this generated track. 
We then feed these coordinates and crude starting values of momentum and 
angles into this fitting program, where the starting values are taken as 

p. = 112.54 MeV/c, d$, = 79.18”, 

3)o = 30.29”, 2, = 35.00 cm. 

Results of the calculation at each iteration are listed in the second part of 
Table I. It is noted that the fitted momentum converges rapidly to the true 

5 We have used corrections to only four track parameters p. , X0, ‘p,, , and z0 to reduce the 
programming complication in our program. The correction dz, is correlated with A/\, , whereas 
A& is correlated with Ap, and do, . This approximation, therefore, gives better correction to & 
than to p,, and ?0 . 
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TABLE I 

COORDINATES AND MAGNETIC FIELD AT EIGHT POINTS 
ALONG A GENERATED TRACK (100 MeV/cw-) 

P(MeV/c) X(cm) Y(cm) Zb-4 B&G) B&G) BSW 

100.00 -30.000 0. 35.000 -0.379 -0.121 20.365 
98.02 -29.808 0.287 36.970 -0.376 -0.125 20.445 
95.96 -29.580 0.543 38.940 -0.372 -0.131 20.527 
93.81 -29.320 0.763 40.911 -0.369 -0,139 20.611 
91.57 -29.032 0.943 42.882 -0.366 -0.148 20.696 
89.20 -28.720 1.077 44.853 -0.362 -0.160 20.782 
86.71 -28.391 1.161 46.824 -0.360 -0.175 20.870 
84.05 -28.052 1.192 48.794 -0.357 -0.194 20.959 

RESULTS 

True Values 
Starting Values 
1st iteration 
2nd iteration 
3rd iteration 
4th iteration 

PoWVlc) Degrees) ddegre4 4-d 

100.0 80.00 30.00 35.000 
112.54 79.18 30.29 35.000 
97.53 80.06 30.19 34.996 

100.41 80.01 29.96 34.996 
99.98 80.00 30.01 34.996 

100.05 80.00 30.00 34.996 

momentum and the ratio of deviations, (pfitted - Ptru#+l)/(pnttee - Ptru#), for 
successive iterations is about 1 : 5 up to the second iteration. The deviation of 
z, from the true value of z,, after the second iteration is 0.004 cm and this comes 
from the fact that the track used in this example has a large dip angle. 

The determination of the useful number of iterations used for this calculation 
depends on the crudeness of the starting values and the errors of the xyz-coordinates 
of data points due to measurement and multiple scattering. The second example 
which uses a real track illustrates this point. 

Using an 8-BeV/c n-p picture taken at the B.N.L. 80 in. bubble chamber, 
we measured 7 points along a 7~f track on our digitizing machine (HERMES). 
Coordinates of these points are converted into the spatial coordinates through the 
B.N.L. spatial reconstruction program, TRED [6] (see first part of Table II). 
TRED also calculates momentum and angles at the beginning point of the track 
by using only the z-component of magnetic field (Bx = By = 0). These calculated 
momentum and angle values are used as the starting values for the fitting program 
TRED 2. Results are listed in the second part of Table II with errors of momentum 
and angles due to measurement and multiple scattering [7]. 
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TABLE II 

RECONSTRUCTED CWRDINATFS OF bfJ3ASUm Parrrs 
AND MAGNETIC FIELD ALONG AN AC!TUAL T+ TRACK 

Track 
Length (cm) B&G) 

0.00 -62.4117 2.3982 29.6463 .701 -.136 20.422 
1.6239 -62.3508 1.1753 30.7130 .701 -.109 20.454 
6.1775 -61.9771 - 2.2694 33.6677 .698 -.026 20.543 

15.7491 -60.2828 -9.3829 39.8436 .681 .194 20.725 
27.6957 -56.4572 - 17.6685 47.5531 .631 .568 20.948 
32.4244 -54.3961 -20.6878 50.5524 .600 .741 21.038 
43.0668 -48.7743 -26.7734 57.2315 .509 1.178 21.272 

RESULTS 

Starting values 335.25 39.88 -88.44 29.6463 
1st iteration 336.80 40.68 -88.14 29.6324 
2nd iteration 337.72 40.67 -88.08 29.6378 
Error 4.0 0.21 0.10 

As seen in Table II, second part, the corrections to momentum and angles at 
the second iteration are less than the errors, so that it is not necessary to make 
further iterations. It is also noted that neglect of the small componentsof magnetic 
field, B, and B, , causes the same order of error of momentum as that of meas- 
urement and multiple scattering in this case. 

REFERENCES 

1. R. W. THOMPSON, Nuovo Cimento 1, 735 (1955). 
2. R. MAY, Princeton Pennsylvania Accelerator Technical Notes A-66 (1963), A-70 (1963), 

A-86 (1963), Princeton Pennsylvania Accelerator, Princeton, New Jersey. 
3. H. D. Tm and D. J. MARTIN, On-line monitoring of bubble chamber measurement on small 

computer. In “Proceedings of the 1964 International Conference on High-Energy Physics, 
Dubna,” The international Union of Pure and Applied Physics and the State Atomic Energy 
Committee of the USSR, Moscow, USSR. 

4. F. T. SOIXTZ, A. D. JOHNSON, and T. B. DAY, L. R. L. Alvarez Group Programming 
Note-P-l 17 (1966), Lawrence Radiation Laboratory, Berkeley, California. 

5. B. B. CULWICK, BNL Internal Report, B.C. 05-2G (1964). Brookhaven National Laboratory, 
Upton, Long Island, New York, 

6. T. W. MORRIS, BNL Internal Report, B.C. F-l 8 (1959) ; W. J. WILLIS, BNL Internal Report, 
BC. F-28 (1960). 

7. W. J. WILLLS, BNL Internal Report, B.C. D-18 (1959). 


